COMPLEX NUMBER

1. DEFINITION

A number of the form a+ib, where $a,b\in R$ and $i=\sqrt{-1}$, is called a complex number and is denoted by 'Z'.

$$z = \boxed{a} + i \boxed{b}$$

$$\downarrow \qquad \downarrow$$

$$Re(z) \quad Im(z)$$

1.1 Conjugate of a Complex Number

For a given complex number z = a + ib, its conjugate ' \bar{z} ' is defined as $\bar{z} = a - ib$

2. ALGEBRA OF COMPLEX NUMBERS

Let $z_1 = a + ib$ and $z_2 = c + id$ be two complex numbers where $a, b, c, d \in R$ and $i = \sqrt{-1}$.

1. Addition:

$$z_1 + z_2$$
 = $(a + bi) + (c + di)$
= $(a + c) + (b + d)i$

2. Subtraction:

$$z_1 - z_2$$
 = $(a + bi) - (c + di)$
= $(a - c) + (b - d)i$

3. Multiplication:

 $\mathbf{Z}_1 \cdot \mathbf{Z}_2$

$$= a (c + di) + bi (c + di)$$

$$= ac + adi + bci + bdi2$$

$$= ac - bd + (ad + bc) i$$

$$(\because i2 = -1)$$

= (a + bi) (c + di)

4. Division:

$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$$
$$= \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

1.
$$a + ib = c + id$$

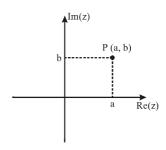
 $\Leftrightarrow a = c \& b = d$

2.
$$i^{4k+r} = \begin{cases} 1; & r = 0 \\ i; & r = 1 \\ -1; & r = 2 \\ -i; & r = 3 \end{cases}$$

3. $\sqrt{a} = \sqrt{a}$ only if at least one of either a or b is non-negative.

3. ARGAND PLANE

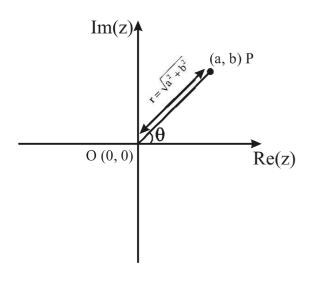
A complex number z = a + ib can be represented by a unique point P (a, b) in the argand plane.



Z = a + ib is represented by a point P (a, b)

3.1 Modulus and Argument of Complex Number

If z = a + ib is a complex number



(i) Distance of Z from origin is called as modulus of complex number Z.

It is denoted by $r = |z| = \sqrt{a^2 + b^2}$

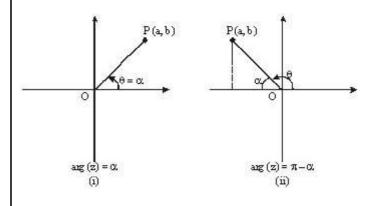
(ii) Here, θ i.e. angle made by OP with positive direction of real axis is called argument of z.

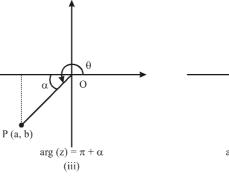
 $z_1 > z_2$ or $z_1 < z_2$ has no meaning but $|z_1| > |z_2|$ or $|z_1| < |z_2|$ holds meaning.

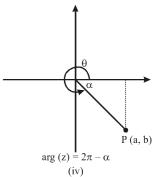
3.2 Principal Argument

The argument ' θ ' of complex number z = a + ib is called principal argument of z if $-\pi < \theta \le \pi$.

Let $\tan \alpha = \left| \frac{b}{a} \right|$, and θ be the arg (z).

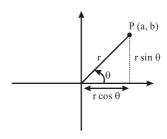






In (iii) and (iv) principal argument is given by $-\pi + \alpha$ and $-\alpha$ respectively.

4. POLAR FORM



$$a = r \cos \theta$$
 & $b = r \sin \theta$;
where $r = |z|$ and $\theta = arg(z)$

$$\therefore z = a + ib$$

$$= r (\cos \theta + i\sin \theta)$$

 $Z = re^{i\theta}$ is known as Euler's form; where

$$r = |Z| \& \theta = arg(Z)$$

5. SOME IMPORTANT PROPERTIES

1.
$$\overline{(\overline{z})} = z$$

2.
$$z + \overline{z} = 2 \operatorname{Re}(z)$$

3.
$$z - \overline{z} = 2i \operatorname{Im}(z)$$

$$\mathbf{4.} \ \, \overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$$

5.
$$\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$$

6.
$$|z| = 0 \Rightarrow z = 0$$

7.
$$z\overline{z} = |z|^2$$

8.
$$|z_1 z_2| = |z_1| |z_2|$$
; $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

9.
$$|\overline{z}| = |z| = |-z|$$

10.
$$|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2 \operatorname{Re}(z_1 \overline{z}_2)$$

11.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (Triangle Inequality)

12.
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

13.
$$|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2) (|z_1|^2 + |z_2|^2)$$

14. amp
$$(z_1, z_2) = \text{amp } z_1 + \text{amp } z_2 + 2 \text{ k}\pi$$
; $k \in I$

15. amp
$$\left(\frac{y_0}{y_1}\right) = \text{amp } z_1 - \text{amp } z_2 + 2 \text{ k}\pi \text{ ; } k \in I$$

16.
$$amp(z^n) = n \ amp(z) + 2k\pi \ ; k \in I$$

6. DE-MOIVRE'S THEOREM

Statement: $\cos n\theta + i \sin n\theta$ is the value or one of the values of $(\cos \theta + i \sin \theta)^n$ according as if 'n' is integer or a rational number. The theorem is very useful in determining the roots of any complex quantity

7. CUBE ROOT OF UNITY

Roots of the equation $x^3 = 1$ are called cube roots of unity.

$$x^{3} - 1 = 0$$

 $(x - 1)(x^{2} + x + 1) = 0$
 $x = 1$ or $x^{2} + x + 1 = 0$

i.e
$$x = \frac{-1 + \sqrt{3}i}{2}$$
 or $x = \frac{-1 - \sqrt{3}i}{2}$

(i) The cube roots of unity are 1,
$$\frac{-1+i\sqrt{3}}{2}$$
, $\frac{-1-i\sqrt{3}}{2}$.

(ii)
$$W^3 = 1$$

- (iii) If w is one of the imaginary cube roots of unity then $1 + w + w^2 = 0$.
- (iv) In general $1 + w^r + w^{2r} = 0$; where $r \in I$ but is not the multiple of 3.
- (v) In polar form the cube roots of unity are:

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- (vi) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
- (vii) The following factorisation should be remembered:

$$a^3 - b^3 = (a - b) (a - \omega b) (a - \omega^2 b)$$
;

$$x^2 + x + 1 = (x - \omega)(x - \omega^2)$$
;

$$a^3 + b^3 = (a + b) (a + \omega b) (a + \omega^2 b);$$

$$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$$

8. 'n' nth ROOTS OF UNITY

Solution of equation $x^n = 1$ is given by

$$x = \cos \frac{2k\pi}{n} + i\sin \frac{2k\pi}{n}$$
 ; $k = 0, 1, 2, ..., n - 1$

$$=e^{i\left(\frac{2k\pi}{n}\right)}$$

;
$$k = 0, 1,, n - 1$$

- 1. We may take any n consecutive integral values of k to get 'n' nth roots of unity.
- 2. Sum of 'n' n^{th} roots of unity is zero, $n \in N$
- 3. The points represented by 'n' n'h roots of unity are located at the vertices of regular polygon of n sides inscribed in a unit circle, centred at origin & one vertex being one +ve real axis.

Properties:

If 1 , $\alpha_1^{}$, $~\alpha_2^{}$, $~\alpha_3^{}$ $\alpha_{n-1}^{}$ are the n , $~n^{th}$ root of unity then :

- (i) They are in G.P. with common ratio $e^{i(2\pi/n)}$
- $(\textbf{ii}) \quad 1^p + \alpha_0^o + \alpha_1^o + \dots + \alpha_{m-0}^o = \begin{bmatrix} 0, & \text{if } p \neq k \ n \\ n, & \text{if } p = k \ n \end{bmatrix} \text{ where } k \in Z$
- (iii) $(1 \alpha_1) (1 \alpha_2) \dots (1 \alpha_{n-1}) = n$
- (iv) $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = \begin{bmatrix} 0, & \text{if n is even} \\ 1, & \text{if n is odd} \end{bmatrix}$
- (v) $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \dots \alpha_{n-1} = \begin{bmatrix} -1, & \text{if n is even} \\ 1, & \text{if n is odd} \end{bmatrix}$

- (i) $\cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin (n\theta/2)}{\sin (\theta/2)} \cos \left(\frac{n+1}{2}\right)\theta$.
- (ii) $\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin (n\theta/2)}{\sin (\theta/2)} \sin \left(\frac{n+1}{2}\right) \theta.$

9. SQUARE ROOT OF COMPLEX NUMBER

Let $x + iy = \sqrt{a + ib}$, Squaring both sides, we get

$$(x + iy)^2 = a + ib$$

i.e.
$$x^2 - y^2 = a$$
, $2xy = b$

Solving these equations, we get square roots of z.

10. LOCI IN COMPLEX PLANE

- (i) $|z z_0| = a$ represents circumference of circle, centred at z_0 , radius a.
- (ii) |z z| < a represents interior of circle
- (iii) $|z z_0| > a$ represents exterior of this circle.
- (iv) $|z z_1| = |z z_2|$ represents \perp bisector of segment with end points $z_1 \& z_2$.

(v)
$$\left| \frac{-1}{-2} \right| = k \text{ represents} : \begin{cases} \text{circle, } k \neq 1 \\ \perp \text{ bisector, } k = 1 \end{cases}$$

- (vi) arg (z) = θ is a ray starting from origin (excluded) inclined at an $\angle \theta$ with real axis.
- (vii) Circle described on line segment joining z₁ & z₂ as diameter is:

$$(-1)(-\overline{z}_1)+(z-7)(-\overline{z}_1)=0.$$

(viii)Four pts. z₁, z₂, z₃, z₄ in anticlockwise order will be concyclic, if & only if

$$\theta = \arg \left(\frac{z_2 - 4}{1 - 4}\right) = \arg \left(\frac{z_2 - 3}{1 - 3}\right)$$

$$\Rightarrow$$
 arg $\left(\frac{2-z_4}{1-z_4}\right)$ - arg $\left(\frac{2-z_3}{1-z_3}\right)$ = $2n\pi$; $(n \in I)$

$$\Rightarrow \arg \left[\left(\frac{2 - Z_4}{1 - Z_4} \right) \left(\frac{1 - 3}{2 - 3} \right) \right] = 2n\pi$$

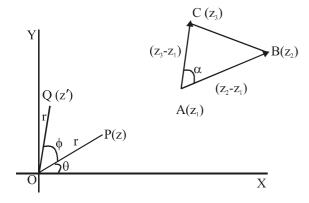
$$\Rightarrow \left(\frac{z_2 - \frac{4}{4}}{z_1 - \frac{4}{4}}\right) \times \left(\frac{z_1 - \frac{3}{4}}{z_2 - z_3}\right) \text{ is real \& positive.}$$

COMPLEX NUMBER

11. VECTORIAL REPRESENTATION OF A COMPLEX

Every complex number can be considered as if it is the position vector of that point. If the point P represents the complex number z then,

$$\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|.$$



(i) If $\overrightarrow{OP} = z = r e^{i \theta}$ then $\overrightarrow{OQ} = z_1 = r e^{i (\theta + \phi)} = z \cdot e^{i\phi}$.

If \overrightarrow{OP} and \overrightarrow{OQ} are of unequal magnitude then $\overrightarrow{OO} = \overrightarrow{OP} e^{i\phi}$

ii) If z_1, z_2, z_3 , are three vertices of a triangle ABC described in the counter-clock wise sense, then

$$\frac{z_3-z}{z_2-z} = \frac{AC}{AB} \left(\cos\alpha + i\sin\alpha\right) = \frac{AC}{AB}.e^{i\alpha} = \frac{\mid z_3-z_1\mid}{\mid z_2-z_1\mid}.e^{i\alpha}$$

12. SOME IMPORTANT RESULTS

- (i) If z_1 and z_2 are two complex numbers, then the distance between z_1 and z_2 is $|z_2 z_1|$.
- (ii) Segment Joining points A (z₁) and B(z₂) is divided by pointP (z) in the ratio m₁: m₂

then
$$z = \frac{m_1 z_2 + m_2 z}{m_1 + m_2}$$
, m_1 and m_2 are real.

(iii) The equation of the line joining z_1 and z_2 is given by

$$\begin{vmatrix} z & \overline{z} \\ z & \overline{z} \\ z_2 & \overline{z}_2 \end{vmatrix} = 0 \text{ (non parametric form)}$$

Or

$$\frac{z-z}{\overline{z}-\overline{z}} = \frac{z-z_2}{\overline{z}-\overline{z}_2}$$

- (iv) $\overline{a}z + a\overline{z} + b = 0$ represents general form of line.
- (v) The general eqn. of circle is:

$$z\overline{z} + a\overline{z} + \overline{a}z + b = 0$$
 (where b is real no.).

Centre : (-a) & radius $\sqrt{|a|^2 - b} = \sqrt{a\overline{a} - b}$.

(vi) Circle described on line segment joining z₁ & z₂ as diameteris:

$$(z-z_1)(\overline{z}-\overline{z}_2)+(z-z_2)(\overline{z}-\overline{z}_1)=0.$$

(vii) Four pts. z₁, z₂, z₃, z₄ in anticlockwise order will be concylic, if & only if

$$\theta = \arg\left(\frac{z_2 - z_4}{z_1 - z_4}\right) = \arg\left(\frac{z_2 - z_3}{z_1 - z_3}\right)$$

$$\Rightarrow \arg\left(\frac{z_2-z_4}{z_1-z_4}\right)-\arg\left(\frac{z_2-z_3}{z_1-z_3}\right)=2n\pi \; ; \; \left(n\in I\right)$$

$$\Rightarrow \arg \left[\left(\frac{z_2 - z_4}{z_1 - z_4} \right) \left(\frac{z_1 - z_3}{z_2 - z_3} \right) \right] = 2n\pi$$

$$\Rightarrow \left(\frac{z_2 - z_4}{z_1 - z_4}\right) \times \left(\frac{z_1 - z_3}{z_2 - z_3}\right) \text{ is real \& positive.}$$

(viii) If z_1 , z_2 , z_3 are the vertices of an equilateral triangle where z_0 is its circumcentre then

(a)
$$\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0$$

(b)
$$z_0^1 + z_1^1 + z_2^1 - z_1z_2 - z_2z_3 - z_3z_1 = 0$$

(c)
$$z_0^1 + z_1^1 + z_2^1 = 3 z_1^1$$

(ix) If A, B, C & D are four points representing the complex numbers z_1 , z_2 , z_3 & z_4 then

$$AB \ | \ | \ CD \quad if \quad \frac{z_4-z_3}{z_2-z_1} \quad \text{is purely real} \ ;$$

$$AB \perp CD \quad if \quad \frac{z_4-z_3}{z_2-z_1} \ \, \text{is purely imaginary]}$$

(x) Two points P (z_1) and Q (z_2) lie on the same side or opposite side of the line $\overline{a}z + a\overline{z} + b$ accordingly as $\overline{a}z_1 + a\overline{z}_1 + b$ and $\overline{a}z_2 + a\overline{z}_2 + b$ have same sign or opposite sign.

Important Identities

(i)
$$x^2 + x + 1 = (x-\omega)(x-\omega^2)$$

(ii)
$$x^2 - x + 1 = (x + \omega)(x + \omega^2)$$

(iii)
$$x^2 + xy + y^2 = (x-y\omega)(x-y\omega^2)$$

(iv)
$$x^2 - xy + y^2 = (x + \omega y) (x + y\omega^2)$$

(v)
$$x^2 + y^2 = (x + iy) (x - iy)$$

(vi)
$$x^3 + y^3 = (x + y) (x + y\omega) (x + y\omega^2)$$

(vii)
$$x^3 - y^3 = (x - y) (x - y\omega) (x - y\omega^2)$$

$$(viii) x^2 + y^2 + z^2 - xy - yz - zx = (x + y\omega + z\omega^2) (x + y\omega^2 + z\omega)$$

or
$$(x\omega + y\omega^2 + z)(x\omega^2 + y\omega + z)$$

or
$$(x\omega + y + z\omega^2)(x\omega^2 + y + z\omega)$$
.

(ix)
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z) (x+\omega y+\omega^2 z)$$

(x +\omega^2 y+\omega z)

QUADRATIC EQUATION

1. QUADRATIC EXPRESSION

The general form of a quadratic expression in x is, $f(x) = ax^2 + bx + c$, where a, b, $c \in R \& a \ne 0$. and general form of a quadratic equation in x is, $ax^2 + bx + c = 0$, where a, b, $c \in R \& a \ne 0$.

2. ROOTS OF QUADRATIC EQUATION

(a) The solution of the quadratic equation,

$$ax^2 + bx + c = 0$$
 is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The expression $D = b^2 - 4ac$ is called the discriminant of the quadratic equation.

(b) If $\alpha \& \beta$ are the roots of the quadratic equation

$$ax^2 + bx + c = 0$$
, then;

- (i) $\alpha + \beta = -b/a$
- (ii) $\alpha \beta = c/a$

(iii)
$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$
.

(c) A quadratic equation whose roots are α & β is $(x - \alpha)(x - \beta) = 0$ i.e.

$$x^2 - (\alpha + \beta) x + \alpha\beta = 0$$
 i.e.

 x^2 – (sum of roots) x + product of roots = 0.

$$y = (ax^2 + bx + c) \equiv a(x - \alpha)(x - \beta)$$

$$= a \left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a}$$

3. NATURE OF ROOTS

- (a) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c \in R & a \neq 0 then;
 - (i) $D > 0 \iff$ roots are real & distinct (unequal).
 - (ii) $D = 0 \Leftrightarrow$ roots are real & coincident (equal).
 - (iii) $D < 0 \Leftrightarrow$ roots are imaginary.
 - (iv) If p + i q is one root of a quadratic equation, then the other must be the conjugate p i q & vice versa. $(p, q \in R \& i = \sqrt{-1})$.
- (b) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c \in Q & a \neq 0 then;
 - (i) If D > 0 & is a perfect square, then roots are rational & unequal.
 - (ii) If $\alpha=p+\sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then the other root must be the conjugate of it i.e. $\beta=p-\sqrt{q}$ & vice versa.

Remember that a quadratic equation cannot have three different roots & if it has, it becomes an identity.

4. GRAPH OF QUADRATIC EXPRESSION

Consider the quadratic expression, $y = ax^2 + bx + c$, $a \ne 0$ & a, b, $c \in R$ then;

- (i) The graph between x, y is always a parabola. If a>0 then the shape of the parabola is concave upwards & if a<0 then the shape of the parabola is concave downwards.
- (ii) $y > 0 \forall x \in R$, only if a > 0 & D < 0
- (iii) $y < 0 \forall x \in R$, only if a < 0 & D < 0

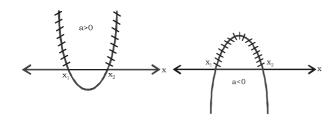
5. SOLUTION OF QUADRATIC INEQUALITIES

$$ax^2 + bx + c > 0 \ (a \neq 0).$$

(i) If D > 0, then the equation $ax^2 + bx + c = 0$ has two different roots $(x_1 < x_2)$.

Then a > 0
$$\Rightarrow x \in (-\infty, x_1) \cup (x_2, \infty)$$

$$a < 0 \Rightarrow x \in (x_1, x_2)$$

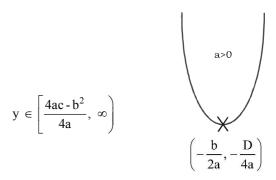


- (ii) Inequalities of the form $\frac{P(x)}{Q(x)} \ge 0$ can be
 - quickly solved using the method of intervals (wavy curve).

6. MAX. & MIN. VALUE OF QUADRATIC EXPRESSION

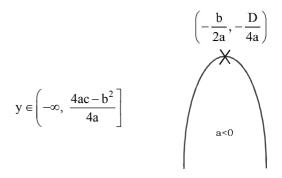
Maximum & Minimum Value of $y = ax^2 + bx + c$ occurs at x = -(b/2a) according as:

For a > 0, we have:



$$y_{min} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{max} \rightarrow \infty$

For a < 0, we have:



$$y_{max} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{min} \rightarrow -\infty$

QUADRATIC EQUATION

7. THEORY OF EQUATIONS

If $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ are the roots of the n^{th} degree polynomial equation :

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$$

where a_0 , a_1 , a_n are all real & $a_0 \neq 0$,

Then,

$$\sum\alpha_1=-\frac{a_1}{a_0};$$

$$\sum \alpha_1 \ \alpha_2 = \frac{a_2}{a_0};$$

$$\sum \alpha_1 \ \alpha_2 \ \alpha_3 = -\frac{a_3}{a_0};$$

.....

$$\alpha_1 \ \alpha_2 \ \alpha_3 \alpha_n = (-1)^n \ \frac{a_n}{a_0}$$

8. LOCATION OF ROOTS

Let $f(x) = ax^2 + bx + c$, where a > 0 & a, b, $c \in R$.

- (i) Conditions for both the roots of f(x) = 0 to be greater than a specified number 'k' are:
 - $D \ge 0$ & f(k) > 0 & (-b/2a) > k.
- (ii) Conditions for both roots of f(x) = 0 to lie on either side of the number 'k' (in other words the number 'k' lies between the roots of f(x) = 0 is:
 - $af(\mathbf{k}) \leq 0$.
- (iii) Conditions for exactly one root of f(x) = 0 to lie in the interval (k_1, k_2) i.e. $k_1 < x < k_2$ are:

$$D > 0$$
 & $f(k_1) \cdot f(k_2) < 0$.

(iv) Conditions that both roots of f(x) = 0 to be confined between the numbers $k_1 & k_2$ are $(k_1 < k_2)$:

$$D \ge 0 \& f(k_1) > 0 \& f(k_2) > 0 \& k_1 < (-b/2a) < k_2$$

Remainder Theorem : If f(x) is a polynomial, then f(h) is the remainder when f(x) is divided by x - h.

Factor theorem : If x = h is a root of equation f(x) = 0, then x-h is a factor of f(x) and conversely.

9. MAX. & MIN. VALUES OF RATIONAL EXPRESSION

Here we shall find the values attained by a rational

expression of the form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$ for real values

of x.

Example No. 4 will make the method clear.

10. COMMON ROOTS

(a) Only One Common Root

Let α be the common root of $ax^2 + bx + c = 0$ & $a'x^2 + b'x + c' = 0$, such that $a, a' \neq 0$ and $ab' \neq a'b$.

Then, the condition for one common root is:

$$(ca'-c'a)^2 = (ab'-a'b)(bc'-b'c).$$

(b) Two Common Roots

Let α , β be the two common roots of

$$ax^2 + bx + c = 0 & a'x^2 + b'x + c' = 0$$

such that a, $a' \neq 0$.

Then, the condition for two common roots is:

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

QUADRATIC EQUATION

11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function $f(x, y) = ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c$ may be resolved into two linear factors is that; $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

OR
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

12. FORMATION OF A POLYNOMIAL EQUATION

If α_1 , α_2 , α_3 ,, α_n are the roots of the n^{th} degree polynomial equation, then the equation is $x^n - S_1 x^{n-1} + S_2 x^{n-2} + S_3 x^{n-3} + \dots + (-1)^n S_n = 0$ where S_k denotes the sum of the products of roots taken k at a time.

Particular Cases

(a) Quadratic Equation if α , β be the roots the quadratic equation, then the equation is:

$$x^{2} - S_{1}x + S_{2} = 0$$
 i.e. $x^{2} - (\alpha + \beta) x + \alpha\beta = 0$

(b) Cubic Equation if α , β , γ be the roots the cubic equation, then the equation is:

$$x^{3} - S_{1}x^{2} + S_{2}x - S_{3} = 0 \quad i.e.$$

$$x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha) x - \alpha\beta\gamma = 0$$

- (i) If α is a root of equation f(x) = 0, the polynomial f(x) is exactly divisible by $(x \alpha)$. In other words, $(x \alpha)$ is a factor of f(x) and conversely.
- (ii) Every equation of nth degree $(n \ge 1)$ has exactly n roots & if the equation has more than n roots, it is an identity.

- (iii) If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then f(x) = 0 must have at least one real root between 'a' and 'b'.
- (iv) Every equation f(x) = 0 of degree odd has at least one real root of a sign opposite to that of its last term.

13. TRANSFORMATION OF EQUATIONS

- (i) To obtain an equation whose roots are reciprocals of the roots of a given equation, it is obtained by replacing x by 1/x in the given equation
- (ii) Transformation of an equation to another equation whose roots are negative of the roots of a given equation—replace x by -x.
- (iii) Transformation of an equation to another equation whose roots are square of the roots of a given equation—replace x by \sqrt{x} .
- (iv) Transformation of an equation to another equation whose roots are cubes of the roots of a given equation—replace x by $x^{1/3}$.

